Фазовая диаграмма системы In-Te

К оглавлению: Другие диаграммы (Others phase diargams)

In-Te

In-Te (Indium-Tellurium) H. Okamoto The assessed phase diagram for the In-Te system is based primarily on [34Kle] and [64Gro], with review of the data of [65Pal] and [80Shc], and has been modified to reflect additional information on the relationship between bIn2Te3 and aIn2Te3 from [62Hol] and [70Gal] and on the liquid miscibility gap at compositions below ~30 at.% Te from [71Wob]. The In-richest phase is In4Te3 [ 73Hog]. The critical temperature of the miscibility gap is 533 C [71Wob] or 528 C [ 80Shc], but not as high as the ~600 C postulated by [64Gro]. The composition of the critical point is 18 at.% Te [71Wob]. The compositions of the two liquids at 450 C are 6.9 and 27.2 at.% Te, respectively [80Shc]. The In side of the assessed diagram is based tentatively on [71Wob], who gave the most detailed data in this composition range. Because the solubility of Te in In(L) is small (<< 1 at.%), the eutectic temperature must be only slightly below the melting point of In; it is shown at 156 C in the assessed diagram. If the reaction is eutectic, the solubility of Te in (In) must be very small. No solubility of In in (Te) is known. In2+xTe3, with a composition between InTe and In2Te3, was found by [63Sem]. Because of the similarity in the lattice parameter, this is probably the same as a phase found later by [65Dek], [67Tol], [68Dek], and [68Ves] in a thin film, also with a composition between In2Te and In2Te3 (In3Te4 is speculated in [67Tol]). In2Te3II in a metastable and metallic form was found by [39Lan], [64Jay], and [ 64Gel]. In2Te3 in a hexagonal form was found in a thin film [70Bar]. In-Te alloys containing 70 to 90 at.% Te become amorphous when quenched from the liquid state [63Luo]. Amorphous InTe films were obtained by thermal sputtering of single-crystal samples on unheated substrate in a vacuum of about 10-3 Pa [73Pol]. InTeII, the NaCl-type high-pressure modification of InTe, was reported by [ 63Ban], [64Jay], and [85Ome]. The transition between InTeI and InTeII under hydrostatic pressure is accompanied by a hysteresis effect whose magnitude increases so markedly at lower temperatures that InTeII can be retained at ambient pressure [85Ome]. The transition between the two liquids (L and L›) is attributed to the conversion of the In cations from univalent to trivalent with a decrease in volume [85Ome]. InTeII may be obtained at >32 kbar under high temperatures [63Dar]. InTeII forms by melting at 40 to 50 kbar and 1100 C [63Ban]. It also forms by transformation of InTeI at 28 kbar and >150 C [63Ban] or 50 kbar and 150 C [ 64Scl]. InTeII can be retained at 1 bar pressure and <125 C by quenching to liquid nitrogen temperature (-195.80 C) [63Dar]. InTeII undergoes a transition to CsCl-type InTeIII at about 150 kbar [85Cha]. The superconducting transition temperature of InTeII is 2.18 K [64Jay] or 3.2 to 3.45 K [64Gel]. It decreases almost linearly with increasing Te content to ~1.04 K at 54.9 at.% Te [64Gel]. Tetragonal InTeII› exists as a transitory phase during the InTeII = InTeI transformation at 1 bar [65Scl]. When In2Te3 is subjected to pressures above 25 kbar, it undergoes a phase transformation to In2Te3II, accompanied by a large drop in resistivity [64Jay]. The superconducting transition temperature is 1.0 K [64Jay]. 34Kle: W. Klemm and H.U. von Vogel, Z. Anorg. Chem., 219, 45-64 (1934) in German. 39Lan: P.W. Lange, Naturwissenschaften, 17, 133-134 (1939). 49Hah: H. Hahn and W. Klingler, Z. Anorg. Chem., 260, 97-109 (1949) in German. 53Sch: K. Schubert, K. Anderko, M. Kluge, H. Beeskow, M. Ilschner, E. Dorre, and P. Esslinger, Naturwissenschaften, 40, 269 (1953) in German. 54Inu: H. Inuzuka and S. Sugaike, Proc. Jpn. Acad., 30(5), 383 (1954). 62Hol: P.J. Holmes, I.C. Jennings, and J.E. Parrott, Phys. Chem. Solids, 23, 1- 5 (1962). 63Ban: M.D. Banus, R.E. Hanneman, M. Strongin, and K. Gooen, Science, 142, 662- 663 (1963). 63Dar: A.J. Darnell, A.J. Yencha, and W.F. Libby, Science, 141, 713-714 (1963). 63Luo: H.L. Luo and P. Duwez, Appl. Phys. Lett., 2(1), 21 (1963). 63Sem: S.A. Semiletov and V.A. Vlasov, Kristallografiya, 8(6), 877-883 (1963) in Russian; TR: Sov. Phys. Crystallogr., 8(6), 704-708 (1964). 64Gel: S. Geller, A. Jayaraman, and G.W. Hull, Jr., Appl. Phys. Lett., 4(2), 35-37 (1964). 64Gro: E.G. Grochowski, D.R. Mason, G.A. Schmitt, and P.H. Smith, J. Phys. Chem. Solids, 25(6), 551-558 (1964). 64Jay: A. Jayaraman, S. Geller, D.B. McWhan, and G.W. Hull, Jr., J. Met., 16(1) , 98 (1964). 64Scl: C.B. Sclar, L.C. Carrison, and C.M. Schwartz, Science, 143, 352-353 ( 1964). 65Gel: S. Geller, A. Jayaraman, and G.W. Hull, Jr., J. Phys. Chem. Solids, 26, 353-361 (1965). 65Pal: L.S. Palatnik, L.V. Atroshchenko, L.P. Gal'chinetskii, and V.M. Koshkin, Dokl. Akad. Nauk, SSSR, 165, 809-812 (1965) in Russian; TR: Sov. Phys. Dokl., 10(12), 1215-1218 (1966). 65Scl: C.B. Sclar, L.C. Carrison, and C.M. Schwartz, Science, 147, 1569-1571 ( 1965). 67Tol: V. Tolutis, A. Deksnys, J. Paukste, and J. Verkelis, Liet. Fiz. Rinkinys, 7(2), 453-461 (1967) in Russian. 68Dek: A. Deksnys, D. Sakalauskaite, and V. Tolutis, Liet. Fiz. Rinkinys, 8, 917-931 (1968) in Russian. 68Ves: T. Vesiene, A. Deksnys, and V. Tolutis, Liet. Fiz. Rinkinys, 8, 933-938 (1968) in Russian. 70Bar: K.C. Barua and A. Goswami, Indian J. Pure Appl. Phys., 8(5), 258-260 ( 1970). 70Gal: L.P. Gal'chinetskii, L.V. Atroshchenko, V.M. Koshkin, and L.A. Sysoev, Izv. Akad. Nauk SSSR, Neorg. Mater., 6(5), 860-863 (1970) in Russian; TR: Inorg. Mater. (USSR), 6(5), 756-759 (1970). 71Wob: M. Wobst, Scr. Metall., 5, 583-585 (1971). 73Hog: J.H.C. Hogg and H.H. Sutherland, Acta Crystallogr. B, 29(11), 2483-2487 (1973). 73Pol: Yu.G. Poltavtsev, V.P. Zakharov, and T.V. Remizovich, Kristallografiya, 18(5), 1109-1110 (1973) in Russian; TR: Sov. Phys. Crystallogr., 18(5), 701- 702 (1974). 76Sut: H.H. Sutherland, J.H.C. Hogg, and P.D. Walton, Acta Crystallogr., 32(8), 2539-2541 (1976). 78Kar: Th. Karakostas, N.F. Flevaris, N. Vlachavas, G.L. Bleris, and N.A. Economou, Acta Crystallogr. A, 34(1), 123-126 (1978). 78Wal: P.D. Walton, H.H. Sutherland, and J.H.C. Hogg, Acta Crystallogr. B, 34( 1), 41-45 (1978). 80Shc: O.D. Shchelikov, Izv. Akad. Nauk SSSR, Neorg. Mater., 16(2), 233-236 ( 1980) in Russian; TR: Inorg. Mater. (USSR), 16(2), 147-149 (1980). 85Cha: T. Chattopadhyay, R.P. Santandrea, and H.G. Von Schnering, J. Phys. Chem. Solids, 46(3), 351-356 (1985). 85Ome: A.V. Omel'chenko and V.I. Soshnikov, Zh. Fiz. Khim., 59(7), 1842-1844 ( 1985); TR: Russ. J. Phys. Chem., 59(7), 1094-1095 (1985). Submitted to the APD Program. Complete evaluation contains 3 figures, 5 tables, and 98 references. Special Points of the In-Te System