Фазовая диаграмма системы In-Se

К оглавлению: Другие диаграммы (Others phase diargams)


In-Se (Indium-Selenium) H. Okamoto The assessed phase diagram for the In-Se system is based on the work of [63Sla] . Minor modifications are based primarily on the experimental data of [74Lik] ( 10 to 95 at.% Se) and [81Ima] (30 to 56 at.% Se). Proposed identifications of stable phases and the reactions involved are seriously inconsistent among different investigators. Therefore, most of the special points of the assessed diagram are tentative and in need of further refinement. Many stable and metastable polymorphic forms occur in the intermediate phases. No solubility limit is known in all terminal and intermediate solid phases. Because the trend of the In4Se3 liquidus indicates that the solubility of Se in In(L) near the melting point is small (<1 at.%), the eutectic temperature should be close to the melting point. Therefore, the value 156 C is adopted in the assessed diagram. The solubility of Se in (In) must also be very small. Phase transitions in In2Se3 have been studied extensively, but the stability of phases and the transition types remain controversial. The difference in the form of specimens used for experiments (bulk or thin film) may be one of the reasons for such disagreements. In2Se3 exists in several polymorphic forms. Although not conclusive, the relative stability of phases in In2Se3 suggested by [80Lik] is adopted in this assessment, because their proposal resolves a significant number of apparently contradictory observations on In2Se3. According to [80Lik], g and d are the only stable phases. a (consisting of a1, a2, and a3) is the low-temperature, metastable form of d. a reversibly transforms to b, which also seems to be metastable, at about 200 C. b exists in several forms, depending on the original form of a [80Lik]. b transforms to stable g on heating, but the reported transition temperatures are far from unanimous, which is not unusual for nonequilibrium transitions. a manifests itself in three closely related forms: a1, a2, and a3 [80Lik]. a1 is the metastable state of d at low temperatures, and accordingly, the structures of a1 and d are identical. a2 and a3, with larger unit cells, usually are observed to be more stable than a1. The transition temperature between g and d is less certain. It is shown tentatively at 730 C based on [67Wob] and [79Pop]. However, [80Lik] proposed the transition to occur at a much lower temperature of 550 C. The reason for this large difference is unknown. The transition from d to g is sluggish and observable only between about 400 and 550 C [80Lik]. According to [74Lan1], [74Lan2], and [75Lan], a transient superlattice phase, b› (modulated b), is formed from b on supercooling below 200 C and is observable down to 60 C. Similarly, a superlattice phase, g›, was observed below 650 C by [75Lan]. [58Sem] indicated in thin films another form of In2Se3 with an a parameter four times as large as that of a2. Most likely, it is also a metastable phase. Metastable, hexagonal bInSe was found by [58Sem]. The structure is closely related to stable aInSe. According to [71Abr], (Se) containing 0.01 to 0.25 at. % In can be made amorphous by rapid quenching and can be retained at room temperature. [73Pol] made an amorphous InSe film by thermal sputtering. [80Pol] made amorphous In-Se films with 33 to 75 at.% Se. The structures were shown with atomic radial distribution curves. High-pressure InSeII was obtained under pressure of 40 to 50 kbar at 250 C [ 71Vez]. [82Wat] confirmed the existence of InSeII and determined the structure. 53Hah: H. Hahn, Angew. Chem., 65, 538 (1953) in German. 54Sch: K. Schubert, E. Dorre, and E. Gunzel, Naturwissenschaften, 41, 448 ( 1954) in German. 57Hah: H. Hahn and G. Frank, Naturwissenschaften, 44, 533-534 (1957) in German. 57Miy: H. Miyazawa and S. Sugaike, J. Phys. Soc. Jpn., 12(3), 312 (1957). 57Sug: S. Sugaike, J. Min. (Jpn.), 2, 63-77 (1957). 58Sem: S.A. Semiletov, Kristallografiya, 3, 288-292 (1958) in Russian; TR: Sov. Phys. Crystallogr., 3, 292-297 (1958). 60Sem: S.A. Semiletov, Kristallografiya, 5(5), 704-710 (1960) in Russian; TR: Sov. Phys. Crystallogr., 5(5), 673-678 (1961). 61Sem1: S.A. Semiletov, Fiz. Tverd. Tela, 3(3), 746-753 (1961) in Russian; TR: Sov. Phys. Solid State, 3(3), 544-548 (1961). 61Sem2: S.A. Semiletov, Dokl. Akad. Nauk SSSR, 137(3), 584-587 (1961) in Russian; TR: Sov. Phys. Dokl., 6(3), 189-191 (1961). 63Kul: B.M. Kulwicki, dissertation, University of Michigan, Ann Arbor, 188 p ( 1963). 63Sla: G.K. Slavnova, N.P. Luzhnaya, and Z.S. Medvedeva, Zh. Neorg. Khim., 8(5) , 1199-1204 (1963) in Russian; TR: Russ. J. Inorg. Chem., 8(5), 622-624 (1963). 65Gul: T.N. Guliev and Z.S. Medvedeva, Zh. Neorg. Khim., 10(7), 1520-1523 ( 1965) in Russian; TR: Russ. J. Inorg. Chem., 10(7), 829-831 (1965). 65Man: L.I. Man and S.A. Semiletov, Kristallografiya, 10(3), 407-409 (1965) in Russian; TR: Sov. Phys. Crystallogr., 10(3), 328-330 (1965). 65Med1: Z.S. Medvedeva and T.N. Guliev, Izv. Akad. Nauk SSSR, Neorg. Mater., 1( 6), 848-852 (1965) in Russian; TR: Inorg. Mater. (USSR), 1(6), 779-782 (1965). 65Med2: Z.S. Medvedeva and T.N. Guliev, Izv. Akad. Nauk SSSR, Neorg. Mater., 1( 12), 2128-2133 (1965) in Russian; TR: Inorg. Mater. (USSR), 1(12), 1925-1929 ( 1965). 66Eli: A.A. Eliseev, T.N. Guliev, and I.P. Korotkova, Izv. Akad. Nauk SSSR, Neorg. Mater., 2(3), 574 (1966) in Russian; TR: Inorg. Mater. (USSR), 2(3), 495-496 (1966). 66Osa: K. Osamura, Y. Murakami, and Y. Tomiie, J. Phys. Soc. Jpn., 21(9), 1848 (1966). 67Rus: P.G. Rustamov, Z.D. Melikova, and M.G. Safarov, Izv. Akad. Nauk SSSR, Neorg. Mater., 3(12), 2203-2206 (1967) in Russian; TR: Inorg. Mater. (USSR), 3( 12), 1922-1925 (1967). 67Wob: M. Wobst, Z. Metallkd., 58(7), 481-483 (1967) in German. 69Myo: P. Myohl and H.A. Ullner, Ann. Phys., 23(3-4), 113-128 (1969) in German. 70Cel: B. Celustka, A. Persin, and D. Bidjin, Fizika, 2, 137-143 (1970). 71Abr: N.Kh. Abriksov and S.N. Chizhevskaya, Izv. Akad. Nauk SSSR, Neorg. Mater., 7(8), 1305-1309 (1971) in Russian; TR: Inorg. Mater. (USSR), 7(8), 1162-1165 (1971). 71Cel: B. Celustka, D. Bidjin, and S. Popovic, Phys. Status Solidi (a), 6, 699 (1971). 71Hog: J.H.C. Hogg, Acta Crystallogr. B, 27(8), 1630-1634 (1971). 71Pop: S. Popovic, B. Celustka, and D. Bidjin, Phys. Status Solidi (a), 6(1), 301-304 (1971). 71Vez: G.C. Vezzoli, Mater. Res. Bull., 6(11), 1201-1204 (1971). 72Lik1: A. Likforman and J. Etienne, Compt. Rend. C, 275(19), 1097-1100 (1972) in French. 72Lik2: A. Likforman, D. Messin, M. Guittard, and J. Flahaut, Compt. Rend. C, 274(4), 378-381 (1972) in French. 73Hog: J.H.C. Hogg, H.H. Sutherland, and D.J. Williams, Acta Crystallogr. B, 29(8), 1590-1593 (1973). 73Pol: Yu.G. Poltavtsev, V.P. Zakharov, and T.V. Remizovich, Kristallografiya, 18(5), 1109-1110 (1973) in Russian; TR: Sov. Phys. Crystallogr., 18(5), 701- 702 (1974). 73Pop: S. Popovic, J. Appl. Crystallogr., 6, 122-128 (1973). 74Cel: J. Celustka and S. Popovic, J. Phys. Chem. Solids, 35(2), 287-289 (1974) . 74Lan1: J. Van Landuyt, G. Van Tendeloo, and S. Amelinckx, Phys. Status Solidi (a), 26(2), K99-K101 (1974). 74Lan2: J. Van Landuyt, G. Van Tendeloo, and S. Amelinckx, Phys. Status Solidi (a), 26(2), K103-K104 (1974). 74Lik: A. Likforman and M. Guittard, Compt. Rend. C, 279(4), 33-35 (1974) in French. 75Lan: J. Van Landyut, G. Van Tendeloo, and S. Amelinckx, Phys. Status Solidi ( a), 30(1), 299-314 (1975). 75Lik: A. Likforman, D. Carre, J. Etienne, and B. Bachet, Acta Crystallogr. B, 31(5), 1252-1254 (1975) in French. 75Nag: K.C. Nagpal and S.Z. Ali, Indian J. Pure Appl. Phys., 13(4), 258-264 ( 1975). 76Nag1: K.C. Nagpal and S.Z. Ali, Indian J. Pure Appl. Phys., 14(5), 348-351 ( 1976). 76Nag2: K.C. Nagpal and S.Z. Ali, Indian J. Pure Appl. Phys., 14(6), 434-440 ( 1976). 77Che: A. Chevy, A. Kuhn, and M.S. Martin, J. Cryst. Growth, 38(1), 118-122 ( 1977). 78Lik: A. Likforman, D. Carre, and R. Hillel, Acta Crystallogr. B, 34(1), 1-5 ( 1978) in French. 79Pop: S. Popovic, A. Tonejc, B. Grzeta-Plenkovic, B. Celustka, and R. Trojko, J. Appl. Crystallogr., 12(4), 416-420 (1979). 80Lik: A. Likforman, P.H. Fourcroy, M. Guittard, J. Flahaut, R. Poirier, and N. Szydlo, J. Solid State Chem., 33(1), 91-97 (1980) in French. 80Pol: Yu.G. Poltavsev and G.P. Sheremet, Zh. Fiz. Khim, 54(1), 65-68 (1980) in Russian; TR: Russ. J. Phys. Chem., 54(1), 36-38 (1980). 80Rig: J. Rigoult, A. Rimsky, and A. Kuhn, Acta Crystallogr. B, 36, 916-918 ( 1980). 81Ima: K. Imai, K. Suzuki, T. Haga, Y. Hasegawa, and Y. Abe, J. Cryst. Growth, 54(3), 501-506 (1981). 82Wat: Y. Watanabe, H. Iwasaki, N. Kuroda, and Y. Nishina, J. Solid State Chem. , 43(2), 140-150 (1982). 84Bel: G.L. Belen'kii, R.A. Suleimanov, N.A. Abdullaev, and V.Ya. Shetinshraiber, Fiz. Tverd. Tela, 26(12), 3560-3566 (1984) in Russian; TR: Sov. Phys. Solid State, 26(12), 2142-2146 (1984). 85Deb: C. DeBlasi, D. Manno, and S. Mongelli, Phys. Status Solidi (a), 90(1), K5-K6 (1985). Submitted to the APD Program. Complete evaluation contains 1 figure, 5 tables, and 76 references. Special Points of the In-Se System