Фазовая диаграмма системы Al-U

К оглавлению: Другие диаграммы (Others phase diargams)

Al-U

Al-U (Aluminum-Uranium) M.E. Kassner, M.G. Adamson, P.H. Adler, and D.E. Peterson The assessed U-Al phase diagram, despite several modifications, is similar to that of [Chiotti], which is essentially the same as the [50Gor] diagram with modifications of [51Bor]. The assessed diagram has been obtained by thermodynamic modeling and is based on review of the experimental data [50Bit, 50Gor, 58Abr, 64Roy, 61Sto, 61Pet2, 69Chi]. The present optimization calculations agree approximately with those given in [Chiotti]. The precise solubilities of Al in (gU), (bU), and (aU) are not known, but estimates can be made. Extrapolating the boundary between the (gU) and the (gU) + UAl2 phase fields suggests a maximum solubility of between 3 and 6 at.% Al. The solubility of Al in (gU) can be extrapolated from the data of [64Str] to a value of 4.7 at.%. The estimated boundary between the (bU) and (bU) + UAl2 phase fields, based on data by [64Str] and [63Kha], intersects the 758 C invariant (i.e., the maximum solubility of Al in (bU)) between 0.4 and 0.6 at.% Al, and the value of 0.54 at.% Al reported by [64Str] based on metallographic analysis is retained in the current assessment. [55Cab] reported that addition of 3.42 at.% Al to U made it possible to retain (bU) at room temperature. The eutectoid composition ranges from about 1.0 to 1.6 at.% Al. [64Str] and [ 64Rus] report a value of 1.4 at.% based on metallographic, microprobe, and resistivity measurements and this value is retained in this assessment. The eutectoid, (bU) = (aU) + UAl2, occurs at 655 C [64Str]. [64Roy] determined that the maximum solid solubility of U in (Al) is 0.007 at.% at 646 C and less than 0.005 at.% 350 C. 49Run: R.E. Rundle and A.S. Wilson, Acta Crystallogr., 2, 148-150 (1949). 50Bit: G. Bitsianes and E. Hayes, Massachusetts Institute of Technology, unpublished data in [50Gor]. 50Gor: P. Gordon and A.R. Kaufman, Trans. AIME, 188, 182-194 (1950). 51Bor: B.S. Borie, Trans. AIME, 191, 800-802 (1951). 55Cab: G. Cabane, M. Englander, and J. Lehmann, Proc. U.N. Int. Conf. Peaceful Uses of Atomic Energy, 9, 120-137 (1955). 58Abr: R. Abramson, R. Boucher, R. Fabre, and H. Monti, Proc. 2nd U.N. Int. Conf. Peaceful Uses Atomic Energy, 6, 173-183 (1958). 58Iva: M.I. Ivanov, V.A. Tumbakov, and N.S. Podoo'skaia, Atomna Energiya, 5, 166-170 (1958), in Russian; TR: Sov. J. Atomic Energy, 5, 1007-1011 (1959). 61Pet1: G. Petzow, S. Steeb, and I. Ellinghaus, J. Nucl. Mater., 4(3), 316-321 (1961) in German. 61Pet2: V.G. Petzow and I. Kvernes, Z. Metallkd., 52, 693-695 (1961) in German. 61Ste: S. Steeb and G. Petzow, Naturwissenschaften, 48, 450-451 (1961) in German. 61Sto: V.W. Storhok, A.A. Bauer, and R.F. Dickerson, Trans. ASM, 53, 837-842 ( 1961). 62Kat: G. Katz and A.J. Jacobs, J. Nucl. Mater., 5(3), 338-340 (1962). 63Kha: D.K. Khakimova, Yu.S. Virgilev, and O.S. Ivanov, in Stroenie i Svoistva Splavov Urana, Toriya i Tsirkoniya, O.S. Ivanov Ed., Gosatomizdat, Moscow, 5-8 (1963) in Russian. 64Roy: P.R. Roy, J. Nucl. Mater., 11(1), 59-66 (1964). 64Str: J.A. Straatman and N.F. Neumann, U.S. Atomic Energy Comm. Report MCW- 1488 (1964). 65Pea: R.J. Pearce, J. Nucl. Mater., 17, 201-202 (1965). 65Run: O.J.C. Runnalls and R.R. Boucher, Trans. AIME, 233, 1726-1732 (1965). 65Smi: A.F. Smith, J. Inst. Met., 93, 454-455 (1965). 69Chi: P. Chiotti and J.A. Kateley, J. Nucl. Mater., 32, 135-145 (1969). 75Lee: L.P. Lee and H.P. Leighly, Metall. Trans. A, 6, 135-139 (1975). 85Wir: M.S. Wire, G.R. Stewart, and R.B. Roof, J. Magnet. Mater., 53(3), 283- 289 (1985). Published in Bull. Alloy Phase Diagrams, 11(1), Feb 1990. Complete evaluation contains 2 figures, 6 tables, and 44 references. Special Points of the U-Al System