Плавление. Гетерогенные равновесия . Часть 7

При одинаковых температурах плавления компонентов эвтектическая температура тем ниже и соответственно падение кривых ликвидуса тем круче, чем меньше энтропия (напомним, что средние

значения энтропии плавления большинства элементов S = 2-4-3, неорганических соединений S = 5-7 и органических соединений S = 9-12).

Решая совместно уравнения типа (56), Кравченко [194! предложил для расчета состава двухкомпонентной эвтектической смеси идеальной системы уравнение

(57)

где ; значения х, Q и Т те же, что

и в уравнении (56), а индексы 1 и 2 означают величины, относящиеся соответственно к первому и второму компонентам.

Многие закономерности идеальных конденсированных систем и, в частности, уравнения (56), (57) в подавляющем большинстве случаев оказываются для реальных систем малоприемлемыми.

Знание таких закономерностей, как справедливо отмечал Кравченко [192], однако, так же необходимо для практических целей, как знание законов идеальных газов при обращении с реальными газами. В реальных системах действуют межмолекулярные силы, определяющие форму кривых (или поверхностей) диаграмм состояния.

Известны многочисленные попытки расчета диаграмм состояния, учитывающие действие этих сил. Один из многих видов равновесия рассмотрен Беккером [195, 196], который показал, что кривая распада бинарного твердого раствора, протекающего без изменения решетки (решетки обоих компонентов одинаковы), может быть выражена уравнением

(58)

где г — координационное число; х — концентрация; U — так называемая энергия смешивания (см. ниже).

Пинес [197, 198], впервые теоретически исследовав с общей точки зрения различные фазовые превращения, протекающие с тепловым эффектом, показал зависимость диаграмм состояния от характера межмолекулярных связей и получил приближенные уравнения кривых равновесия ряда простейших бинарных систем. При этом Пинес, как и Беккер, не учитывал зависимости энергии связи от концентрации и предполагал, что растворы смешиваются без изменения объема. Условия, сформулированные Пинесом, не исчерпывали всех возможных случаев возникновения различных диаграмм состояния. Кроме того, при анализе эвтектических и перитек-тических диаграмм состояния Пинес отождествил тройные точки с критической точкой распада (расслоения) твердого раствора.

Дальнейшее, более широкое и строгое исследование влияния межмолекулярного взаимодействия компонентов на равновесие

фаз в бинарных системах было проведено в работах Данилова и Каменецкой [199—201].

В настоящее время в результате трудов упомянутых исследователей, а также работ Лившица, Степанова, Сторонкина, Финкель-штейна и других авторов имеется возможность достаточно точно во многих случаях количественно рассчитать диаграммы состояния реальных систем.

 

Другие части:

Плавление. Гетерогенные равновесия . Часть 1

Плавление. Гетерогенные равновесия . Часть 2

Плавление. Гетерогенные равновесия . Часть 3

Плавление. Гетерогенные равновесия . Часть 4

Плавление. Гетерогенные равновесия . Часть 5

Плавление. Гетерогенные равновесия . Часть 6

Плавление. Гетерогенные равновесия . Часть 7

Плавление. Гетерогенные равновесия . Часть 8

Плавление. Гетерогенные равновесия . Часть 9

Плавление. Гетерогенные равновесия . Часть 10

Плавление. Гетерогенные равновесия . Часть 11

Плавление. Гетерогенные равновесия . Часть 12

Плавление. Гетерогенные равновесия . Часть 13

 

 

Содержание