Оценка погрешностей измерений. Расчет выборочного стандартного отклонения

Пусть измеряемая имеет известное значение величина X. Естественно, отдельные, найденные в процессе измерения значения этой величины x1,x2,…xn заведомо не вполне точны, т.е. не совпадают с X. Тогда величина будет являться абсолютной погрешностью i-го измерения. Но поскольку истинное значение результата X, как правило, не известно, то реальную оценку абсолютной погрешности используя вместо X среднее арифметическое ,которое рассчитывают по формуле:



(1)

Однако при малых объемах выборки вместо предпочтительнее пользоваться медианой. Медианой (Ме) называют такое значение случайной величины х, при котором половина результатов имеет значение меньшее, а другая ­большее, чем Ме. Для вычисления Ме результаты располагают в порядке возрастания, то есть образуют так называемый вариационный ряд. Для нечетного количества измерений n мeдиана равна значению среднего члена ряда. Например,
для n=3  
Для четных n, значение Ме равно полусумме значений двух средних результатов. Например,
для n=4  

Далее рассчитывают среднеквадратичную погрешность (стандартное отклонение выборки), являющуюся мерой разброса и характеризующую случайную погрешность определения:



(2)

Выборочное стандартное отклонение sзависит от объема выборки n и ее значение колеблется по случайному закону около постоянного значения генерального стандартного отклонения σ


 

Для расчета s пользуются неокругленными результатами анализа с неточным последним десятичным знаком.
При очень большом числе выборки (n>) случайные погрешности могут быть описаны при помощи нормального закона распределения Гаусса. При малых n распределение может отличаться от нормального. В математической статистике эта дополнительная ненадежность устраняется модифицированным симметричным t-распределением. Существует некоторый коэффициент t, называемый коэффициентом Стьюдента, который в зависимости от числа степеней свободы (f) и доверительной вероятности (Р) позволяет перейти от выборки к генеральной совокупности.
Стандартное отклонение среднего результата определяется по формуле:



(3)

Разности между средним  выборки и средним значением генеральной совокупности μ лежат в Р случаях в пределах, которые при помощи нормального распределения и связанного с ним t-распределения определяются следующим выражением:



(4)

Величина является доверительным интервалом среднего значения . Для серийных анализов обычно полагают Р = 0,95.

 

Таблица 1. значения коэффициента Стьюдента (t)


f

Р=0,90

Р=0,95

Р=0,98

Р=0,99

1

6,31

12,7

31,8

63,6

2

2,92

4,30

6,97

9,93

3

2,35

3,18

4,54

5,84

4

2,13

2,78

3,75

4,60

5

2,02

2,57

3,37

4,03

6

1,94

2,45

3,14

3,71

7

1,90

2,36

3,00

3,50

8

1,86

2,31

2,90

3,36

9

1,83

2,26

2,82

3,25

10

1,81

2,23

2,76

3,17

11

1,80

2,20

2,72

3,11

12

1,78

2,18

2,68

3,05

 

Пример 1. Из десяти определений содержания марганца в пробе требуется подсчитать стандартное отклонение единичного анализа и доверительный интервал среднего значения Mn %: 0,69; 0,68; 0,70; 0,67; 0,67; 0,69; 0,66; 0,68; 0,67; 0,68.
Решение. По формуле (1) подсчитывают среднее значение анализа


 

                                                     = 0,679 .
Далее по формуле (2) находят стандартное отклонение единичного результата

 

 

По табл. 1 (приложение) находят для f = n-1= 9 коэффициент Стьюдента (Р = 0,95) t = 2,26 и рассчитывают доверительный интервал среднего значения.


 

По табл. 1 (приложение) находят для f=n-1=9 коэффициент Стьюдента (Р=0,95) t=2,26 и рассчитывают доверительный интервал среднего значения. Таким образом, среднее значение анализа определяется интервалом (0,679 ± 0,009) % Мn.


Пример 2. Среднее из девяти измерений давления паров воды над раствором карбамида при 20°С равно 2,02 кПа. Выборочное стандартное отклонение измерений s = 0,04 кПа. Определить ширину доверительного интервала для среднего из девяти и единичного измерения, отвечающего 95 % - й доверительной вероятности.
Решение. Коэффициент Стьюдента t для доверительной вероятности 0,95 и f = 8 равен 2,31. Учитывая, что
 и , найдем:
- ширина доверит.  интервала для среднего значения
 - ширина доверит.  интервала для единичного измерения значения

Если же имеются результаты анализа образцов с различным содержанием, то из частных средних s путем усреднения можно вычислить общее среднее значение s. Имея m проб и для каждой пробы проводя nj параллельных определений, результаты представляют в виде таблицы:

Номер
образца

Номер анализа

1

2

i…nj

1

x11

x12

x1i…

2

x21

x22

x2i…

3

x31

x32

x3i…

j…

m

Средняя погрешность рассчитывают из уравнения:


        

(5)

со степенями свободыf = nm, где n – общее число определений, n = m.nj.


Пример 2. Вычислить среднюю ошибку определения марганца в пяти пробах стали с различным содержанием его. Значения анализа, % Mn:
1. 0,31; 0,30; 0,29; 0,32.
2. 0,51; 0,57; 0,58; 0,57.
3. 0,71; 0,69; 0,71; 0,71.
4. 0,92; 0,92; 0,95; 0,95.
5. 1,18; 1,17; 1,21; 1,19.
Решение. По формуле (1) находят средние значения в каждой пробе, затем для каждой пробы рассчитывают квадраты разностей, по формуле (5) - погрешность.
1)  = (0,31 + 0,30 + 0,29 + 0,32)/4 = 0,305.
2) = (0,51 + 0,57 + 0,58 + 0,57)/4  = 0,578.
3) = (0,71+ 0,69 + 0,71 + 0,71)/4 = 0,705.
4) = (0,92+0,92+0,95+0,95)/4  =0,935.
5)  = (1,18 + 1,17 + 1, 21 + 1,19)/4 = 1,19.

Значения квадратов разностей
1) 0,0052 +0,0052 +0,0152 +0,0152 =0,500.10-3.
2) 0,0122 +0,0082 +0,0022 +0,0082 =0,276.10-3.
3) 0,0052 + 0,0152 + 0,0052 + 0,0052 = 0,300.10-3.
4) 0,0152+ 0,0152 + 0,0152 + 0,0152 = 0,900.10-3.
5) 0,012 +0,022 +0,022 + 02 = 0,900.10-3.
Средняя погрешность для f = 4,5 – 5 = 15


 

s = 0,014 % (абс. при f=15 степеням свободы).

Когда проводят по два параллельных определения для каждого образца и находят значения х' и х", для образцов уравнение преобразуется в выражение:


(6)

при f = m степеней свободы.


Пример 3. Найти среднюю погрешность в фотометричес­ком определении хрома в стали по двукратному анализу десяти проб с разным содержанием.
Решение. Расчет производят по таблице (с учетом формулы (6)):

Проба

х'

х"

х'-х"

(х'-х")2

1

3,77

3,75

0,02

0,0004

2

2,52

2,55

0,03

0,0009

3

2,46

2,48

0,02

0,0004

4

3,25

3,20

0,05

0,0025

5

1,82

1,85

0,03

0,0009

6

2,05

2,10

0,05

0,0025

7

0,88

0,90

0,02

0,0004

8

1,04

1,02

0,02

0,0004

9

1,10

1,13

0,03

0,0009

10

1,52

1,48

0,04

0,0004

 

 

Средняя погрешность по формуле (6) равна

0,023 % Cr

(при f=10 степеням свободы).

 

см. также

Математическая обработка результатов химического анализа

  1. О математической обработке результатов химического анализа
  2. Оценка погрешностей измерений. Расчет выборочного стандартного отклонения
  3. Запись результатов измерений
  4. Сравнение средних результатов химического анализа.
    t-критерий Стьюдента
  5. Проблема подозрительно выделяющихся значений
  6. Погрешности косвенных измерений. Погрешность функций одного или нескольких переменных